Rainbow Connectivity of Sparse Random Graphs

نویسندگان

  • Alan M. Frieze
  • Charalampos E. Tsourakakis
چکیده

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = logn+ω n where ω = ω(n) → ∞ and ω = o(log n) and of random r-regular graphs where r ≥ 3 is a fixed integer. Specifically, we prove that the rainbow connectivity rc(G) of G = G(n, p) satisfies rc(G) ∼ max {Z1, diameter(G)} with high probability (whp). Here Z1 is the number of vertices in G whose degree equals 1 and the diameter of G is asymptotically equal to logn log logn whp. Finally, we prove that the rainbow connectivity rc(G) of the random r-regular graph G = G(n, r) whp satisfies rc(G) = O(log n) where θr = log(r−1) log(r−2) when r ≥ 4 and rc(G) = O(log 4 n) whp when r = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Connection of Sparse Random Graphs

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = log n+ω ...

متن کامل

On Rainbow-k-Connectivity of Random Graphs

A path in an edge-colored graph is called a rainbow path if the edges on it have distinct colors. For k ≥ 1, the rainbow-k-connectivity of a graph G, denoted rck(G), is the minimum number of colors required to color the edges of G in such a way that every two distinct vertices are connected by at least k internally vertex-disjoint rainbow paths. In this paper, we study rainbow-k-connectivity in...

متن کامل

Complexity of Rainbow Vertex Connectivity Problems for Restricted Graph Classes

A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the comp...

متن کامل

Further Hardness Results on Rainbow and Strong Rainbow Connectivity

A path in an edge-colored graph is rainbow if no two edges of it are colored the same. The graph is said to be rainbow connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph is strong rainbow connected. We consider the complexity of the problem of deciding if a given edge-colored graph is rainbow or stro...

متن کامل

Rainbow Connection of Random Regular Graphs

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connection of the random r-regular graph G = G(n, r) of order n, where r ≥ 4 is a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012